EXHIBIT G

EXHIBIT G – CONCEPTS OF PROPOSED FACILITIES

As stated in R14-3-219, Exhibits to Application, Exhibit G of the Rules of Practice and Procedure Before Power Plant and Transmission Line Siting Committee:

"Attach any artist's or architect's conception of the proposed plan or transmission line structures and switchyards, which applicant believes may be informative to the committee."

Set forth below is a list of attached sub-exhibits, which provide concepts of the proposed Project that Southline believes will be informative to the Siting Committee:

Exhibit G-1	Typical 345-kV tangent lattice structure diagram
Exhibit G-2	Typical 345-kV angle lattice structure diagram
Exhibit G-3	Typical 345-kV dead-end lattice structure diagram
Exhibit G-4	Typical 345-kV tangent tubular steel pole diagram
Exhibit G-5	Transposition tubular steel pole diagram
Exhibit G-6	Typical 230-kV direct embedded tangent tubular steel
	pole diagram
Exhibit G-7	Typical 230-kV Tangent tubular steel pole diagram
Exhibit G-8	Typical 230-kV suspension angular tubular steel pole
	diagram
Exhibit G-9	Typical 230-kV dead-end tubular steel pole diagram
Exhibit G-10	Comparison of typical existing and proposed structure
	types
Exhibit G-11	Example of a 230-kV substation
Exhibit G-12a	Typical ROW configuration, New Build Section
Exhibit G-12b	Typical ROW configuration (150-foot), Upgrade
	Section

TRANSMISSION LINE STRUCTURES

I. New Build Section 345-kV Structures

Two types of steel structures could potentially be used for the 345-kV transmission line: these include self-supporting lattice and monopole tubular structures, as shown in Exhibits G-1 through G-5.

II. Upgrade Section 230-kV Structures

The 230-kV double-circuit transmission line is proposed to be tubular steel structures (Exhibits G-1 through G-9). A comparison of structure types are shown in Exhibit G-10.

SUBSTATION FACILITIES: UPGRADE SECTION

Substation improvements, which are needed to accommodate the 230-kV transmission line upgrade as part of the CEC Upgrade Section, would generally include new yard expansions, line and/or bus compensation equipment, shunt reactor or shunt capacitors, switches and breakers, and installation of new transformers, in addition to construction laydown areas. See Exhibit G-11 for a representative photograph of a 230-kV substation.

RIGHT-OF-WAY

Finally, Exhibits G-12a and G-12b provide examples of typical right-of-way configuration for the New Build and Upgrade Sections of the Project.

EXHIBIT G-2: TYPICAL 345-KV ANGLE LATTICE

EXHIBIT G-3: TYPICAL 345-KV DEAD-END LATTICE

EXHIBIT G-4: TYPICAL 345-KV TANGENT TUBULAR STEEL POLE

EXHIBIT G-5: TYPICAL 345-KV TRANSPOSITION TUBULAR STEEL POLE

EXHIBIT G-6: TYPICAL 230-KV DIRECT EMBEDDED TANGENT TUBULAR STEEL POLE

EXHIBIT G-7: TYPICAL 230-KV TANGENT TUBULAR STEEL POLE

EXHIBIT G-8: TYPICAL 230-KV SUSPENSION ANGULAR TUBULAR STEEL POLE

EXHIBIT G-9: TYPICAL 230-KV DEAD-END TUBULAR STEEL POLE

EXHIBIT G-10: COMPARISON OF TYPICAL EXISTING AND PROPOSED STRUCTURE TYPES

EXHIBIT G-11: EXAMPLE OF A 230-KV SUBSTATION

EXHIBIT G-12A: TYPICAL ROW CONFIGURATION, NEW BUILD SECTION

EXHIBIT G-12B: TYPICAL ROW CONFIGURATION (150-FOOT), UPGRADE SECTION

